Vector Analysis

Vector Analysis

Phase 2: Calculus in Space

Syllabus Goal

Master vector calculus: Differential operators (Gradient, Divergence, Curl) and Integral theorems (Green’s, Divergence, Stokes’).

Differential Operators

  • Gradient ($\nabla f$): Vector pointing in direction of steepest ascent.
  • Divergence ($\nabla \cdot \mathbf{v}$): Outward flux density.
  • Curl ($\nabla \times \mathbf{v}$): Circulation density.

Integral Theorems

  1. Divergence Theorem: $\iiint_V (\nabla \cdot \mathbf{F}) dV = \iint_S \mathbf{F} \cdot d\mathbf{a}$.
  2. Stokes’ Theorem: $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{a} = \oint_C \mathbf{F} \cdot d\mathbf{l}$.
  3. Green’s Theorem: Special case of Stokes’ theorem in a plane.

Physics Applications

  • Electromagnetism (Maxwell’s Equations).
  • Fluid Dynamics.