Vector Analysis
Phase 2: Calculus in Space
Syllabus Goal
Master vector calculus: Differential operators (Gradient, Divergence, Curl) and Integral theorems (Green’s, Divergence, Stokes’).
Differential Operators
- Gradient ($\nabla f$): Vector pointing in direction of steepest ascent.
- Divergence ($\nabla \cdot \mathbf{v}$): Outward flux density.
- Curl ($\nabla \times \mathbf{v}$): Circulation density.
Integral Theorems
- Divergence Theorem: $\iiint_V (\nabla \cdot \mathbf{F}) dV = \iint_S \mathbf{F} \cdot d\mathbf{a}$.
- Stokes’ Theorem: $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{a} = \oint_C \mathbf{F} \cdot d\mathbf{l}$.
- Green’s Theorem: Special case of Stokes’ theorem in a plane.
Physics Applications
- Electromagnetism (Maxwell’s Equations).
- Fluid Dynamics.