Complex Numbers and Functions
Phase 1: The Foundations
Syllabus Goal
Study elements of complex analysis. Master Euler’s formula and basic complex algebra.
Core Concepts
- Definition: $z = x + iy$.
- Polar Form: $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$.
- Euler’s Formula: $e^{i\theta} = \cos \theta + i \sin \theta$.
Key Operations
- Addition/Subtraction: $(a+bi) \pm (c+di) = (a\pm c) + (b\pm d)i$.
- Multiplication: $(a+bi)(c+di) = (ac-bd) + (ad+bc)i$.
- Division: Multiply numerator and denominator by the conjugate of the denominator.
Implementation in Zig
- Using
std.math.Complexfor complex number arithmetic. - Implementing Euler’s formula visualization.